PRACOWNIA PROJEKTOWA JOANNA OKRASKA

Załącznik do:
पecyzil, postanowienia, pozwolenia,

- pisma, zá́niadezenia, zgloszenia
z dnia 20072016
nr/znak inA. $6743.2,43.2016$

-KATEGORIA OBIEKTU V

INWESTOR:

DZIALKA NR 11/10 OBREB 28
UL. BELZACKA
97-300 PIOTRKÓW TRYBUNALSKI

Zespół projektowy:
Architektura:

Konstrukcja:

Opracowal:
$m g r$ inż. arch. foemnna $O k^{r} \tau s k a$
Uprawnienid \ddagger 人dowlon? do projektowanio b/ ograniczé w specialności ordh fêkłoniczne nr uprawn'er $57 / 00 / \mathrm{Wk}$ w specjalności architektonicznej bez ograniczeń
mgr inż. Piotr Jagielski, upr. nr 10/95/Wk w specjainości konstrukcyjno-budowianej bez ogranicze mgr inż. Bartłomiej Baszczyñski
mgkinż. Piotr Jagielski upr.bout Mene - w specjidinosci: kone ch don wudbulienej do:

- projeltowowemid of ot ograniczeen dierowenio robatlami budowlanymi
Nr lis. 10/95/Wt

PHTTRKOWSKIE WODOCIAGI I KANALIZACJA
SPÓLKA z O.O.
97-300 Piotrków Trybunalski
ul. Przemysłowa 4 tel. 44/645 1601
ZAKZAD WODOCIAGOW I KANAbIZACJ
Unpodiniono propelt

MIERowivik
Selkcji Teodguicznej
mgr inż.Paweł Wroński

SPIS ZAWARTOŚCI

Oświadczenia Projektantów 3
Uprawnienia Projektantów 4
Zaświadczenia o przynależności do Okręgowej Izby 7

1. Zagospodarowanie 9
2. Przeznaczenie i program użytkowy 9
3. Wpływ obiekłu i jego użytkowania na środowisko 10
4. Opis urzadzeń Skateparku 10
5. Nawierzchnia Skateparku 12
6. Odwodnienie Skateparku 12
7. Obiekty skatingowe 13
8. Dane konstrukcyjno - materiałowe 13
9. Wykończenie skateparku. 15
SPIS RYSUNKÓW
Rys. Nr 1 Zagospodarowania Skateparku 1:500
Rys. Nr 2 Rzut Skateparku 1:100
Rys. Nr 3 Urzadzenia nr 1, nr 2, nr 3, nr 11, nr 12 $1: 25$
Rys. Nr 4 Urządzenia nr 4, nr 5, nr 6, nr 7 1:25
Rys. Nr 5 Urzadzenia nr 8, nr 9, nr 10 1:25
Rys. Nr 6 Studnia kanalizacyjna 1 - przekrój podłużny 1:20
Rys. Nr 7 Studnia kanalizacyjna 1 - przekrój normainy 1:20
Rys. Nr 8 Studnia kanalizacyjna 2i3, odwodnienie liniowe 1:20

OŚWIADCZENIE PROJEKTANTA

Wymagane zgodnie z art. 20 ust. 4 ustawy z dnia 7 lipca 1994r. - Prawo Budowlane

Obiekt:	Przebudowa Infrastruktury Sk W Piotrkowie Trybunalskim
Adres inwestycji:	działka nr 11/10 obręb 28 Ul. Belzacka
	97-300 Piotrków Trybunalski
Inwestor:	Miasto Piotrków Trybunalski 9asaż Rudowskiego 10 97-300 Piotrków Trybunalski

Oświadczam, że Projekt budowlano-wykonawczy Przebudowy Infrastruktury Skate Park w Piotrkowie Trybunalskim w zakresie obejmujacym branżę architektoniczno-budowlana sporzadzony został zgodnie z obowiqzzujqcymi przepisami oraz zasadami wiedzy technicznej.

Wszelkie odstępstwa od rozwiqzzań przyjętych w dokumentacji projektowej dokonane bez zgody zwalniaja projektanta od odpowiedzialności prawnej za skutki wynikłe z dokonanej zmiany.

mgr inż. arch. Jodnna Okraska, upr. hr 57/00/Wt
mgr inz. Piotr Jagielski
upr. budoy fin -w specjemotci:
1- projetrowenia byivery in donoj do:
2 - kierownia
Nr upl. 10/95/Wt
mgr inż. Piotr Jagielski,
upr. nr 10/95/WŁ

GP.U.713.57100/WL

DECYZ』A

Na podrtawie ant 13 url, atc 14 ure 1 ustawy 2 tuin it lipes 1994n. Frawo
 Gospodadi Proserzaninj i Budownictar z dnis 30 grodris 19945. W sprewie
 cromaconiu maicalos

Pani Joarmy Olcarda

 w zakresie proyorowania awodowego niewednego do Lerniemia veramien budowlabyct
 робtymixim,

> adaje

Pani Jcarnic Olcasce - mgs ins archivelo
4.04.03.15\%25. Czenochowie

UPRA WSDEM BA ELDOWLANE

Za zgodnośc
 2 oryginałem

w sprajahnoci : actuindacricemi
w zalcraie : projeluownia ber ogranicont
Od niriajraj degyai shury adwósnie do Giownego Ingpelense Miedrars Budowinego,
 dorercania

Oncommie:

1. Peni fomme Olonales
ul. Ciollowntaigo 5 m .162
93-510 En边
2. Gidonty fripaltior Nectore Budowlenago

WW Wrandie
3. at

DECYZJA Nr UB/7/96

Na podstawie art. 104 Kpa w zwiazku z art. 12 ust. 3 i 4 ustawy Prawo budowlane z dnia 07-07-1994r. (Dz.U. Nr 89 poz. 414) oraz $§ 10$ ust. 4 Rozporzadzenia MGPiB z dnia 30-12-1994r. (Dz.U. Nr 8 poz. 124) w sprawie samodzielnych funkcji technicznych w budownictwie zgodnie z zatwierdzonym przez Giównego Inspektora Nadzoru Budowlanego szczegółowym programem egzaminu na uprawnienia budowlane wprowadzonym Zarzadzeniem Wojewody Łódzkiego z dnia 11-12-1995r. po przeprowadzeniu postepowania kwalifikacyjnego na wniosek mani/Pahiotra. Jagielskiego
i zapoznaniu sie ze zgromadzona dokumentacja Komisji Egzaminacyjnej w sprawie oceny przygotowania zawodowego Pana/Rani . Piotra Jagielskiego po złożeniu przez ubiegajacego sie Pana/Pania . . Piotra Jagielskiego pisemnego egzaminu testowego i egzaminu ustnego oraz ocenami wystawionymi przez zespoły oceniajace

postanawiam

nadać Panu/Rani ...Piotrowi Jagiel skiemu uprawnienia budowlane w specjalności konstrukey.noo-budowlanej do projektụanạia bez ograniczzén
\qquad

Po przeprowadzonym w dniu .16:10:1995 postepowaniu kwalifikacyjnym z wniosku Pani/Pana Piotra Jagielskiego członkowie Komisji Egzaminacyjnej postanowili dopuścić Pana/Pania do egzaminu na uprawnienia budowlane jak..wyżej.

W dniu . 14:12.19956dbył sie pisemny egzamin testowy, w którym uzyskał(a) Pan/Pani .63., $7 . \%$ maksymalnej punktacji.
Warunkiem zakwalifikowania sie do cześci ustnej egzaminu na uprawnienia budowlane było, zgodnie z cytowanym na wstepie szczegółowym programem egzaminu wydanym na podstawie przepisów ustawy Prawo budowlane i rozporzadzenia wykonawczego reguluja-
 w budownictwie, uzyskanie minimum 65\% maksymalnej punktadog jrojektowdnif hez ograniczen Warunek ten został przez Pana/Pania spełniony.

IZBA ARCHITEKTOOW
RZECZYPOSPOLITEJ POLSKIEJ
Łódzka Okręgowa Rada Izby Architektów RP

ZAŚWIADCZENIE - ORYGINAL

(wypis z listy architektów)

Łódzka Okręgowa Rada Izby Architektów RP zaświadcza, że:
mgr inż. arch. Joanna Okraska
posiadajaca kwalifikacje zawodowe do pełnienia samodzielnych funkcji technicznych w budownictwie w specjalności architektonicznej i w zakresie posiadanych uprawnień nr 57/00/Wt, jest wpisana na listę członków Łódzkiej Okręgowej Izby Architektów RP pod numerem: LO-0249.

Członek czynny od: 31-07-2002 r.

Data i miejsce wygenerowania zaświadczenia: 28-01-2016 r. Łódź.
Zaświadczenie jest ważne do dnia: 31-12-2016 r.
Podpisano elektronicznie w systemie informatycznym Izby Architektów RP przez: Wojciech Buczyński, Sekretarz Okręgowej Rady Izby Architektów RP.

Nr weryfikacyjny zaświadczenia:

> LO-0249-6F4C-2175-E5A4-7AD3

[^0]
OPIS TECHNICZNY BUDOWY SKATEPARKU W PIOTRKOWIE TRYBUNALSKIM

1. Zagospodarowanie

1.1. Przedmiotem inwestycji jest przebudowa Skateparku na działce nr 11/10 w Piotrkowie Trybunalskim. Obiekt ma być zlokalizowany na północnej działki 11/10.
1.2. Teren skateparku jest ogrodzony z dojściem od strony zachodniej i wjazdem od strony wschodniej. Istniejq̨ce ogrodzenie według planu zagospodarowania rozebrać, a następnie wykonać nowe obejmujace nowy skatepark. Od strony zachodniej ogrodzenie ustawić w odległości $1,50 \mathrm{~m}$ od ulicy. Wysokość ogrodzenia zgodna z istniejqcym $-1,80 \mathrm{~m}$, wykonane z paneli ogrodzeniowych - oczkach $5 \times 20 \mathrm{~cm}$ ocynkowanych.
1.3. Skatepark zajmie powierzchnię $754,70 \mathrm{~m}^{2}$. Płyta betonowa (posadzka) - powierzchni $522,20 \mathrm{~m}^{2}$ wyposażona w elementy skateingowe wykonane z prefabrykatów betonowych.

2. Przeznaczenie i program użyłkowy

2.1. Projektuje się budowę żelbetowego skateparku służącego do jazdy na rowerach ($b \mathrm{mx}$), deskorolkach oraz rolkach (rolki agresywne). Preferowana technologią budowy skateparku jest budowa przy użyciu prefabrykowanych elementów skateingowych montowanych na placu budowy przy zachowaniu monolityczności konstrukcji.
2.2. Zakłada się wykonanie prefabrykowanych elementów skałeingowych z betonu klasy C35/45 montowanych na placu budowy, wg technologii firm specjalizujacych się w dostawach prefabrykowanych elementów wyposażenia skateparków, m.in.: Concrete Gmbh., Müller Jelcz-Laskowice, MPG sp. cyw., UKSkateParks Lmt.
2.3. W obiektach, w których konieczne jest wykonanie fragmentu figury na miejscu należy użyć betonu klasy C35/45. Takimi obiektami są m.in. Bowl corner, piramidy i podesty.
2.4. Poszczególne figury należy wtopić w posadzkę, w sposób umożliwiający płynny najazd. Nie dopuszcza sies stosowania żadnych elementów pośrednich takich jak np. blachy najazdowe, które podatne sa na kradzież, a w trakcie użytkowania mogą się odkręcać i powoduja duży hałas podczas użytkowania. Wszystkie krawędzie jezdne należy zabezpieczyć profilem zamkniętym $30 \times 30 \times 3 \mathrm{~mm}$ ze stali kwasoodpornej 1.4301 lub równoważnej.
2.5. Z uwagi na walory użytkowe i trwałość, zaleca się wykonywania elementów skateingowych z prefabrykatów żelbetowych, zamiast na placu budowy. Nawierzchnie jezdne powinny odzwierciedlać spód formy, w której sq wykonywane. Wykonywanie elementów na placu budowy nie zapewnia właściwych warunków do wykonania przeszkód. Nie ma możliwości zawibrowania betonu, proces wykończenia nawierzchni odbywa się podczas jego wiązania i jest wykonywany ręcznie z uwagi na skomplikowanie kształty oraz brak dostępnych maszyn. Wykonawca nie ma wpływu na zmienność czynników ałmosferycznych lopady deszczu, ekspozycja na słońce, zapewnienie $c / w=$ const) w przeciwieństwie do prefabrykatów, które wykonywane sq w zakładzie prefabrykacji w kontrolowanych warunkach technologicznych.
2.6. Całość zgodna z PN-EN 14974 Urzqdzenia dla użyłkowników sprzętu rolkowego. Wymagania bezpieczeństwa i metody badań.

3. Wpływ obiekłu i jego użyłkowania na środowisko

Inwestycja nie będzie miała negatywnego wpływy na środowisko. Nie spowoduje zanieczyszczeń gleby i wód gruntowych. Eksploatacja skateparku nie wywoła szkodliwego pylenia, wibracji, zapachu, zasłonięcia budynków. Hałas generowany podczas użytkowania skateparku wystapi w ramach dopuszczalnego natężenia.

Odwodnienie powierzchniowe do projektowanego odwodnienia liniowego zlokalizowanego wzdłuż południowej krawędzi skateparku z odprowadzeniem do istniejqcej studni kanalizacji deszczowej znajdującej się na obiekcie.

4. Opis urzqdzeń Skateparku

Urzadzenie nr 1: Bowl corner o wysokości $1,70 \mathrm{~m}$, powierzchnia jezdna tworzona krzywa o promieniu $2,05 \mathrm{~m}$, górna krawędź zakończona copingiem z rury $60,3 \times 3 \mathrm{~mm}$. Odcinki prostoliniowe wykonać z
prefabrykatów żelbetowych, natomiast odcinki krzywoliniowe uformować na placu budowy na mokro. Ze względu na wysokość podestu przekraczajaca $1,0 \mathrm{~m}$ należy zamontować na nim barierki o wysokości $1,20 \mathrm{~m}$ wykonane z profilu $40 \times 40 \times 3 \mathrm{~mm}$.
Urzqdzenie nr 2: Speedbump o wysokości $0,60 \mathrm{~m}$ i średnicy $3,00 \mathrm{~m}$.
Urzadzenie nr 3: Funbox o wysokości $0,60 \mathrm{~m}$ oraz Hubba o wysokości $1,05 \mathrm{~m}$ w najwyższym punkcie i $0,50 \mathrm{~m}$ przy zjeździe. Krawędzie górne wykończone copingiem z rury $60,3 \times 3 \mathrm{~mm}$. Linie przełamania obu elementów muszą się pokrywać.
Urzqdzenie nr 4: Bank o wysokości 1,00 m wykonany z płyły prefabrykowanej. Rail o wysokości $0,40 \mathrm{~m}$ przy najeździe i $0,80 \mathrm{~m}$ przy zjeździe wykonany z profilu $60 \times 60 \times 3 \mathrm{~mm}$ oraz Hubba o wysokości względnej $0,40 \mathrm{~m}$ przy najeździe i $0,60 \mathrm{~m}$ przy zjeździe, górne brzegi elementu wykończone profilem $30 \times 30 \times 3 \mathrm{~mm}$. Krawędzie przełamania na płycie najazdowej i Hubba'ie muszą się pokrywać. Przej́scie od płyty najazdowej w Quoter biegnacy do urządzenia nr 5 wykonać na mokro.
Urzadzenie nr 5: Quoter corner o wysokości $1,00 \mathrm{~m}$ powierzchnia jezdna, górna krawędź zakończona copingiem z rury $60,3 \times 3 \mathrm{~mm}$. Odcinki prostoliniowe wykonać z prefabrykatów żelbetowych, natomiast odcinki krzywoliniowe uformować na placu budowy na mokro. Najazd na element z poziomu $+1,00 \mathrm{~m}$.

Urzadzenie nr 6: Schody 5 stopni o wysokościach $0,20 \mathrm{~m}$, górny stopień wykończony profilem $30 \times 30 \times 3 \mathrm{~mm}$ i wykonany razem z posadzka na górnym poziomie. Piramida ułworzona z przedłużenia płyt najazdowych typu Bank, wysokość urzqdzenia - 1,00 m, powierzchnie jednq uformować na mokro.

Urzadzenie nr 7: Bank o wysokości 1,00 m wykonany z płyty prefabrykowanej oraz Quoter pipe o wysokości $1,00 \mathrm{~m}$, element zakończony copingiem z rury $60,3 \times 3 \mathrm{~mm}$.

Urzadzenie nr 8: Rail o wysokości $0,40 \mathrm{mi}$ długości całkowitej $3,00 \mathrm{~m}$ wykonany z profilu $60 \times 60 \times 3 \mathrm{~mm}$.
Urzadzenie nr 9: Manualpad o wysokościach $0,30 \mathrm{mi} 0,20 \mathrm{~m}$ ustawione jeden na drugim, z prefabrykowanym najazdem. Większa płyta wtopiona w posadzkę na 10 cm . Górna płyła położona częściowo na dolnej i podparta bloczkiem betonowym. Najazd na poziom $+0,30 \mathrm{~m}$ oraz wszystkie krawędzie płyt zabezpieczone profilem $60 \times 60 \times 3 \mathrm{~mm}$.

Urzadzenie nr 10: Grindbox o wysokości $0,40 \mathrm{~m}$ i długości $3,00 \mathrm{~m}$. Brzegi elementu wykończone profilem $30 \times 30 \times 3 \mathrm{~mm}$. Murek wtopiony w posadzkę na głębokość 10 cm .

Urzadzenie nr 11: Jumpbox o wysokości $1,50 \mathrm{~m}$ i szerokość $3,50 \mathrm{~m}$. Ściany elementu okalaja studnię. Przestrzeń wypełnić piaskiem, a nawierzchnię jezdna uformować na mokro. Brzegi elementu wykończone profilem $30 \times 30 \times 3 \mathrm{~mm}$.

Urzadzenie nr 12: Quoter pipe o wysokości $1,70 \mathrm{~m}$, element zakończony copingiem z rury $60,3 \times 3 \mathrm{~mm}$. Odcinki prostoliniowe wykonać z prefabrykatów żelbetowych, natomiast odcinki krzywoliniowe uformować na placu budowy na mokro.

5. Nawierzchnia Skateparku

5.1. Na całej powierzchni skateparku projektuje się jednolita podbudowę, zarówno pod płyta posadzki jak i pod przeszkodami wykonanymi z prefabrykatów żelbetowych.
5.2. Warstwy konstrukcyjne nawierzchni:

- Płyta betonowa z betonu C25/30 o grubości 15 cm
- Folia budowlana-0,15 mm
- Warstwa wyrównawcza z piasku 10-40 cm
- Stara nawierzchnia asfaltowa
5.3. Posadzka wykonana w klasie ścieralności A6, z betonu C25/30 - grubości 15 cm zbrojonego makrozbrojeniem polipropylenowym w ilości $1,5 \mathrm{~kg} / \mathrm{m}^{3}$. Całość zacierana mechanicznie na gładko przy zastosowaniu zacieraczek dwuosiowych i zabezpieczona głęboko penetrującym impregnatem. Dylatacje cięte na pola o powierzchni ok. $20 \mathrm{~m}^{2}$ i wypełniane sznurem do dylatacji oraz zabezpieczane masa systemowa.
5.4. Istniejące dojście i dojazd do Skateparku należy przebudować. Chodnik od strony zachodniej przełożyć i podnieść na długości 2,0 m, natomiast wjazd od strony wschodniej podnieść nawierzchnię asfaltowa do poziomu nowego skateparku na długości $4,0 \mathrm{~m}$ zachowujqc spadek 2,0\%.

6. Odwodnienie Skateparku

6.1. Odprowadzenie wód opadowych do systemowego odwodnienia liniowego usyłuowanego wzdłuż południowej krawędzi Skateparku. Długość odwodnienia $38,00 \mathrm{~m}$. Spadki podłużne koryłek $0,5 \%$. W najniższym miejscu wyprowadzić rurę o średnicy 160 mm i wciqć się w istniejącq studniq̨ kanalizacji deszczowej zlokalizowanej przy urzadzeniu nr 9.
6.2. Płycie należy nadać spadki do środka o wartości $0,5 \% \mathrm{w}$ kierunku podłużnym (przełamanie przedsławia rysunek nr 2) oraz 1,0 \% w prostopadłym kierunku do odwodnienia liniowego. Spadki wyprofilować podbudowa z piasku zagęszczanego warstwami o maksymalnej grubości 20 cm i wskaźniku zagęszczenia $\mathrm{ls} \geq 0,96$.

7. Obiekty skatingowe

7.1. Wymiary i kształt elementów przyjęto według zasad ergonomii i zasad obowiqzujacych przy uprawianiu skateboardingu, tj. normy PN-EN 14974 Urzadzenia Dla użytkowników sprzętu rolkowego. Wymagania bezpieczeństwa i metody badań., dotyczqcej skateparków wolnodostępnych, niezadaszonych.
7.2. Powierzchnia jezdna wszystkich elementów betonowych skateparku powinna być równa i bez szczelin. Projektowane obiekty należy wykonać z prefabrykatów betonowych o klasie C35/45 montowanych na placu budowy. Zaprojektowano prefabrykaty o niskim stopniu skomplikowania, możliwym do realizacji przez większość renomowanych zakładów prefabrykacji. Przerwy technologiczne pomiędzy prefabrykatami należy wypełnić betonem i zatrzeć na gładko w technologii DST.
7.3. Wszystkie elementy powinny być zbrojone prętami \#12 mm, \#10 mm, \#8 mm i \#6 mm ze stali klasy B500SP i B500A. Otulina zbrojenia min. 30 mm .
7.4. W celu wyeliminowania zjawiska klawiszowania styku płyty skateparku i obiektu skateingowego, należy w prefabrykacie przewidzieć fabrycznie lub zamontować na placu dyble \#10 ze stali zbrojeniowej co 20 cm . Dyble w uprzednio wywiercony otwór należy wkleić z zastosowaniem szybkosprawnych zapraw montażowych, np. CX5 lub równoważnych.
7.5. Przerwy technologiczne pomiędzy prefabrykatami wypełnić betonem C35/45 i zatrzeć na gładko w technologii DST.
7.6. Jako warstwę wyrównawcza pomiędzy prefabrykatami a podbudowa stosować podsypkę cementowo-piaskowq.

8. Dane konstrukcyjno - materiakowe

8.1. Powierzchnia jezdna wszystkich elementów metalowych musi być równa, nie może posiadać najmniejszych przerw ani szczelin. Musi być wykonana z jednego kawałka kszłałtownika. Dotyczy to wszystkich profill i rur.
8.2. Na krawędziach elementów profil zamknięty $30 \times 30 \times 3 \mathrm{~mm}$ powinien być równo wtopiony w beton. Profil nie może odstawać od betonowej powierzchni elementów ani być zamontowany poniżej.
8.3. Żadna z krawędzi profilu nie może mieć jakichkolwiek przerw ani szczelin. Krawędzie nie moga mieć żadnych wystajacych ani wklęsłych nierówności. Zabezpieczenia należy wykonać ze stali kwasoodpornej typu 18/8 lub równoważnej, o parametrach nie gorszych niż dla gatunku 1.4301.

Fig. I Profil równo "wtopiony" w krawędź elementu. Do profilu przyspawane marki z drutu stalowego w celu pewnego zakotwienia w betonie
8.4. Krawędzie elementów musza być odpowiednio sztywne i odporne na udar w normalnym zakresie użytkowym - w żadnym wypadku nie mogą się zniekształcać przy punktowych uderzeniach pegami bmx-ów lub truckami (wymaga się, co najmniej 3mm grubości profili).
8.5. Coping należy wykonać ze stalowej rury, goraco walcowanej, - minimalnej grubości ścianki $3,0 \mathrm{~mm}$, średnicy $60,3 \mathrm{~mm}$. Rura wykonana z 1 kawałka, jako całość. Niedopuszczalne sa jakiekolwiek szczeliny, szpary, lub nierówności.
8.6. Geometria mocowania copingu powinna być zgodna z pkt. 5.1.2.6 normy PN-EN 14974. Zaleca się umiejscowienie ok. $30,0 \mathrm{~mm}(y)$ od podestu quotera i ok. $4,0 \mathrm{~mm}(x)$ od powierzchni jezdnej quotera. Dopuszczalny odchył odległości copingu to $2,0 \mathrm{~mm}$, jednak nie może on przekraczać normatywnych wartości granicznych.

Fig. 2 Fragment wystajq̨cy copingu powinien wynosić minimum 3 mm ku przodowi i ku górze oraz maksymalnie 12 mm ku przodowi i 30 mm ku górze (EN 14974:2006).

9. Wykończenie skateparku

Krawędzie dolne przeszkód muszą równo dotykać nawierzchni - nie może być żadnych nierówności lub wystajacych materiałów w dolnej części elementu przy nawierzchni.

Nie zaleca się malowania elementów, gdyż barwne żywicowania maja charak.ter wyłącznie estetyczny i krótkotrwały. Pomalowany żywicami skatepark wygląda świeżo i czysto tylko w dniu odbioru technicznego. Jednakże już po pierwszym dniu użytkowania widać ślady kół na malowanych powierzchniach, a nawet wytarcia i zarysowania w przypadku intensywnej jazdy. Jest to zjawisko normalne i nie sposób z nim walczyć.

Użyte w dokumentacji projekłowej i specyfikacji nazwy marek (firm), wyrobów budowlanych czy technologii, należy trakłować w myśl art. 29 ust. 3 ustawy Prawo Zamówień Publicznych, jako informację na temat oczekiwanego standardu poziomu jakości, a nie ściśle jako wyrób konieczny do użycia.

Możliwe jest zastosowanie innych równoważnych wyrobów budowlanych i technologii, kłórych zastosowanie zagwaranfuje spełnienie warunków podstawowych, o których mowa w art. 5 Prawa Budowlanego, spełnienie warunków usławy o wyrobach budowlanych oraz pozwoli na zachowanie standardu i poziomu jakości równoważnego lub nie gorszego od określonego w projekcie i niniejszej specyfikacji.

Sekcji pechniczuej

Nr 1 Bowl corner

$+$
85

Nr 12 Quoter pipe

JWAGl:

Urzadzenie nr 1 i nr 12:
Odcinki prostoliniowe wykonać z prefabrykatów zelbetowych natomiast odcinki krzywoliniowe uformować na placu budowy na mokro
z betonu C35/45. Coping z rury $60,3 \times 3 \mathrm{~mm}$.

Urzaqdzenie nr 3:

Przedłużenie płyt najazdowych uformowac na placu na mokro z betonu C35/45. Lina przełamania Fanbox'a i Hubba musi sie pokrywać.

Urzqdzenie nr 11:

Ściany Jumpbox'a okalajq studnię (wg osobnego opracowania). Przestrzeń wypełnic piaskiem, a powierzchnie jezdna uformować na mokro z betonu C35/45.

Materiały:

Beton klasy C35/45
Stal zbrojeniowa klasy B500SP, B500A
Stal szlachetna klasy TP 304 i TP 304L 1.4301

Nr 3 Funbox

Nr 3 Hubba

Nr 11 Jumpbox

Nr 7 Bank

UWAGI:

Urządzenie nr 4:
Przejście od płyty najazdowej w quoter biegnqcy od urzadzenia nr 5 wykonać na mokro z betonu c35/45. Krawędź przełamania na płycie najazdowej i na Hubba'ie musi sie pokrywać.

Urządzenie nr 5 i nr 7 :
Odcinki prostoliniowe wykonać z prefabrykatów
żelbetowych natomiast odcinki krzywoliniowe
uformować na placu budowy na mokro
z betonu $C 35 / 45$. Coping z rury $60,3 \times 3 \mathrm{~mm}$.

Nr 6 Schody $,+0, \quad 05+30$.

Nr 6 Piramida

Nr 7 Quoter pipe

. 234 .

Nr 8 Rail

Nr 10 Grindbox

UWAG:
Urzqdzenie nr 8:
Poreczz osadzona w posadzce betonowej na głębokości $30-40 \mathrm{~cm}$ poprzez nawiercenie otworu i zabetonowanie nóg.

Urzqdzenie nr 9:

Większa pryta wtopiona w posadzke na 10 cm . Górna płyta połozona częściowo na dolnej
i podparta bloczkiem betonowym. najazd na poziom +0,30m zabezpieczony profilem 30x30x3mm.

Urzqdzenie nr 10 :
Murek wtopiony w posadzkę na glębokosć 10 cm . Materiaty:

Beton klosy C35/45
Stal zbrojeniowa klasy B500SP, B500A
Stal szlachetna klosy TP 304 i TP 304L 1.4301

[^0]: Dane zawarte w niniejszym zaświadczeniu można sprawdzić podając $n r$ weryfikacyjny zaświadczenia w publicznym serwisie internetowym Izby Architektów: www.izbaarchitektow.pl lub kontaktując się bezpośrednio z właściwą Okręgowa Izba Architektów RP.

